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We study the Abelian sandpile model on decorated one-dimensional chains. We show that there
are two types of avalanches, and determine the effects of finite, though large, system size L on the
asymptotic form of distributions of avalanche sizes, and show that these differ qualitatively from
the behavior on a simple linear chain. For large L, we find that the probability distribution of the
total number of topplings s is not described by a simple finite-size scaling form, but by a linear
combination of two simple scaling forms: Probr(s) = 1 f1(£) + ¢z f2(7%), where fi and f2 are

nonuniversal scaling functions of one argument.

PACS number(s): 05.40.+j

I. INTRODUCTION

The sandpile model is a simple cellular automaton
model, introduced by Bak, Tang, and Wiesenfeld in 1987
to illustrate the phenomena of self-organized criticality
(SOC) [1]. Since then several sandpilelike automata have
been studied [2-6]. Similar cellular automata have been
proposed as models of other self-organizing systems, e.g.,
earthquakes [7,8], forest fires [9], neural networks [10],
and potential energy fluctuations in liquid water [11].
However, the precise conditions under which the steady
state of a driven system shows critical (long-range) corre-
lations are not well understood, in particular, in noncon-
servative systems [12-14]. In systems with conservation
laws, for example, in sandpile models with local conser-
vation of sand, it is easily shown that the moments of
distribution of avalanche sizes diverge as powers of the
system size [15-18]. This, however, does not necessarily
imply power law tail in the distribution of avalanche sizes
(see, for example, [19]), as these can be accounted for by
rare large events.

As we still do not understand what conditions are nec-
essary, or sufficient, for the onset of criticality in driven
dissipative systems, most studies of SOC depend upon
numerical simulations for evidence of criticality. To in-
corporate the effect of finite-size cutoffs, one usually fits
numerical data to a finite-size scaling form in which the
critical exponents of the infinite system appear as pa-
rameters. However, on the basis of extensive numeri-
cal studies of several one-dimensional sandpile automata,
Kadanoff et al. [5] and Chhabra et al. [20] have argued
that because of the presence of more than one character-
istic length scale in many of these models, simple finite-
size scaling theory does not correctly describe the distri-
bution of avalanche sizes. These authors found that a
more general “multifractal” scaling form was necessary
to get satisfactory fits to their Monte Carlo data.

As the finite-size scaling assumption based on a single
scaling form is widely used in the numerical studies of
SOC, it seems desirable to test it in analytically tractable
models. This we do in this paper for a class of one-
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dimensional sandpile models, which are special cases of
the general Abelian sandpile model (ASM). The ASM is
perhaps the simplest of the models showing self-organized
criticality [17]. It is of special interest because of its ana-
lytical tractability, which arises mainly from the Abelian
property. Several interesting results for the critical state
and the critical exponents are known [21-24]. The model
has been solved exactly in one dimension [1,25], on the
Bethe lattice [26], and in the mean field limit [27]. The
ASM with a preferred direction of particle transfer turns
out to be equivalent to the voter model, and all the crit-
ical exponents can be determined in all dimensions [28].
Recently the structure of the Abelian group has been
determined in terms of the toppling matrix [29].

We consider the ASM on one-dimensional chains
formed by joining a single type of unit cells (see Fig. 1).
Such decorated chains are the simplest generalization of
the linear chain. We have studied two cases in detail.
Case A is a chain of alternating double and single bonds.
Case B is a chain of diamonds joined together by single
bonds. We solve analytically the ASM on these graphs
in the limit of large system size L, and find that the
avalanche distribution function shows a nontrivial scal-
ing behavior (a brief account of this work has appeared
earlier [30]). The properties of the ASM on these chains
are very different from those on the simple linear chain,
which has been studied earlier by Bak et al. [31], and
in more detail recently by Ruelle and Sen [25]. In fact,
the behavior of the ASM on a simple linear chain is not
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FIG. 1. The one-dimensional chains formed by joining (A)
doublets, (B) diamonds, (C) single sites.
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typical of one-dimensional ASM’s.

In case A (and also in case B), we find that there
are two types of avalanches type I and type II. Type I
avalanches spread a distance of order L on one side of
the point where a particle has been added and a distance
of order 1 on the other side. As a result the number of
toppling at any site is of order 1, and the total number
of toppling in an avalanche scales as L. In contrast, type
I avalanches spread a distance of order L on both sides,
the number of topplings on a site scales as L, and the the
total number of topplings in an avalanche scales as L2.

We find that, for large L, the distribution functions of
duration ¢ of an avalanche, and of the number of distinct
sites toppled sq4 in an avalanche, do have a simple scaling
form in our model. However, the distribution functions
of the total number of topplings s, and of the maximum
number of topplings n. at any one site, do not have a
simple scaling form, but a more complicated linear com-
bination of two simple scaling forms (LC2SSF)

Probr(X) = L™ fi(X L™™)
+L—ﬁz fz(X L—"’) for large L , (1)

where X is a random variable measuring the “size” of
the avalanche, and (;,v; and B2 and v. are critical ex-
ponents. For X = n,, f; = v, =0 and B3 = vs = 1. For
X =3s,0; =vi; =1 and B2 = v, = 2. The scaling func-
tions f; and f; are also different for different X'’s. We
also find that this behavior is quite robust and does not
depend on the choice of the unit cell, but in general the
function f; and f» are not universal. We expect similar
behavior in the ASM on other effectively one-dimensional
graphs, in which the system has large extent in only one
dimension and only finite extent in transverse dimensions
(for example, a long cylinder).

The plan of this paper is as follows. In Sec. II, we
define precisely the cases A, B, and C dealt with in this
paper. The analysis of case A and B is quite similar.
We shall confine ourselves mainly to case A in this pa-
per, and only briefly summarize results obtained by us
for case B towards the end. Case C is already well stud-
ied and is included here only for comparison. In Sec.
III, we characterize the recurrent configurations of the
model for case A. We find that the total number of re-
current configurations grows exponentially with the size
of the system. As a result, the entropy per site in the
SOC state is nonzero even as L — oo. We determine
the distribution of heights in the critical steady state of
the model and find that it shows nontrivial dependence
on the distance from the boundary. Sections IV-VII are
devoted to the study of the propagation of avalanches
in case A. In Sec. IV, we use the decomposition of an
avalanche into waves of topplings, introduced by Ivashke-
vich et al. [32], which greatly simplified the analysis of
the avalanches. In the analysis of the waves of topplings,
we are led to introduce a transfer operator, which trans-
fers a particle from a unit cell to its neighboring unit cell
without relaxing the configuration. The relaxation rules
are then recast as relaxation rules for this operator. In
Sec. V, we discuss the propagation of avalanche front
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using the properties of the transfer operator for the type
I and the type II avalanches on the doublet chain. In
Sec. VI, we calculate the probability distributions of the
linear extent of avalanche sq4, the duration of avalanche
t, and the total number of topplings s. In Sec. VII, we
analyze the probability distribution of avalanche size in
terms of multifractals, and support our analysis with nu-
merical simulation. In Sec. VIII, we briefly outline how
the analysis of Secs. IV-VII can be extended to diamond
chain (case B), and its differences from case A. Section
IX contains a summary of our results, and a discussion
of possible extension to ASM’s on long cylinders, which
seems to be a promising way to study the ASM in two
dimensions.

II. DEFINITION OF THE MODEL

The model is defined as follows. A site on the chain is
denoted by a pair of indices (z, j), where i = 1 to L labels
the unit cell, and j numbers a site within the unit cell.
In case A, j ranges from 1 to 2. In case B, j ranges from
1 to 4, with sites within a unit cell labeled in a clockwise
direction starting from the left site. At each site (¢,7)
there is an integer height variable h;;. The dynamics of
sandpile involves the following two types of steps.

(i) Addition of particles: A particle is added at a ran-
domly selected site by increasing the height at that site
by 1.

(ii) Toppling: If the height h;; is greater than a pre-
assigned threshold height h$; at that site, it topples. Its
height decreases by hg;, and one particle is transferred
along each bond connecting it to its neighbors.

We choose hg; to be independent of ¢ and equal to
the coordination number of site of type j. For example
hg; = 3, for all the sites in case A. In case B, hj; = 2,
for j = 2 and 4, and h§; = 3, for j = 1 and 3. Clearly,
the topplings conserve the number of particles in bulk
but each toppling at a boundary site causes a loss of
one particle from the system. The process of toppling
continues until there are no unstable sites. The sequence
of topplings caused by addition of one particle is called
an avalanche. A new particle is added after the avalanche
has stopped.

III. CHARACTERIZING THE RECURRENT
CONFIGURATIONS

The critical steady state is easy to characterize using
the general theory of ASM’s [17]. The configurations
that occur in the steady state with nonzero probability
are called recurrent configurations. These configurations
occur with equal probability. The set of recurrent config-
urations may be characterized by the burning algorithm
([17], see also [33]). In this algorithm, we start with a
configuration in which all the sites are unburnt. A site is
“burnt” if its height is greater than the number of bonds
joining it to its unburnt neighbors. The configuration
which can be fully burnt is called an “allowed” configu-
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ration. It has been shown in Ref. [17] that the allowed
configurations form a closed set under the dynamics of
the ASM. We will summarize the proof in brief here. Let
us assume the contrary. Then there is an allowed con-
figuration C, such that, after the toppling of a site ¢,
it becomes C’ which is not allowed. Let F be the set
of sites which cannot be burnt in C’. From the rule of
the ASM it is obvious that in configuration C, the set of
sites which is obtained by deleting site ¢ from F' cannot
be burnt. This contradicts our assumption that C' is al-
lowed. Hence the set of allowed configurations is closed.
A stable allowed configuration is clearly a recurrent con-
figuration. It was later shown by Speer [33] that all the
recurrent configurations are allowed.

In the burning algorithm, the sites can be burnt in
any order, and the final result is independent of the or-
der in which the sites are burnt. The first site which can
be burnt is clearly a boundary site. We choose the con-
vention that the burning starts from the left boundary
and continues rightward as long as possible. The unit
cell where the rightward burning stops will be called the
break point (BP). Afterwards, the burning is allowed to
proceed leftwards from the right boundary.

Let us now consider case A. It is easy to see using the
burning algorithm that the allowed values of (h;y, h;2) in
a recurrent configuration for ¢ on the left of the BP are
(3,3) and (3,2). For ¢ on the right of the BP these are
(3,3) and (2,3), and at the BP these are (2,3), (3,1),
and (1,3). In the following, we shall call the doublet
(3,3) as type A, (3,2) as type By, and (2, 3) as type Bs.
The doublets (3,1) and (1, 3) shall be called of type C;
and Cs, respectively. Thus a configuration of sandpile
is denoted by a string of these symbols. For example,
AAB,AC;B;AB; represents a configuration for L = 8
chain in which the first two doublets are of type A, the
third is of type B, etc. It is easy to see that the formal
sum over all the strings corresponding to the recurrent
configurations is given by

L
Z=(A+B)"+) (A+B1)!
r=1

X(By + C1 + C3)(A+ By)L— . (2)

The total number of recurrent configurations is obtained
by substituting 1 for each of the formal symbols in the
above expression. Thus the number of recurrent configu-
rations for a chain of size L is (1 + %L)2L. Consequently,
the entropy per site (defined as the logarithm of the total
number of recurrent configurations divided by the num-
ber of sites) is equal to In(2)/2 in the large L limit. For
the simple linear chain, the entropy per site in the SOC
state is zero. This fact is responsible for its nongeneric
behavior.

To the left (right) of the BP, the left (right) site of
a doublet always has height 3, and the right (left) site
of a doublet has height 2 and 3 with probability % for
each. The BP can occur at any of the L doublets with
equal probability. Averaging over the position of the BP,
this implies that the probabilities of the left site of the
tth doublet having height 2 and 3 are ¢/(2L) and 1 —
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i/(2L), respectively [we assume that L is large, so that
we need not distinguish between L and (L + 1), etc.].
Similarly the probabilities of the right site of a doublet
having height 2 and 3 are 3(1 —i/L) and 3(1 + i/L),
respectively. Thus the average height profile in the SOC
state varies linearly with 7 in case A, and the SOC state
is not translationally invariant even far away from the
boundaries. This feature is not present in case C.

IV. TRANSFER OPERATOR

To analyze the structure of avalanches, it is useful to
define a decomposition of avalanches into subavalanches.
One such decomposition was defined in Ref. [34], in terms
of subavalanches called “inverse avalanches.” It uses the
“untoppling” process, which is the inverse of the toppling
process. Later Ivashkevich et al. showed that the same
decomposition can be realized more simply, without in-
troducing untopplings, in terms of “waves of topplings”
[32]. From the Abelian property of the ASM, we can top-
ple unstable sites in any order; the resulting final config-
uration is the same. Thus we may choose the following
order: Topple the source site once and let all other sites
topple until they are stable. This sequence of topplings is
called the first wave of topplings. After this, if the source
site is still unstable, it is toppled once more and the rest
of the sites are allowed to relax. This constitutes the sec-
ond wave of topplings. This process continues until the
whole configuration becomes stable.

It is easy to see that the waves of topplings propa-
gate in exactly the same way as the burning front in the
burning algorithm. Thus a unit cell which cannot be fully
burnt from the left (right) side stops a wave propagating
towards it from the left (right). We refer to such config-
urations as left (right) stoppers. However, the stopper
is itself modified in the process of stopping a wave, so
that the next wave may cross it. It thus stops a wave
of topplings coming towards it (if from a favorable direc-
tion), but cannot stop an avalanche which is a sequence of
waves. It only slows down the spreading of an avalanche.

Let us denote the unstable doublet obtained by adding
a particle at the left and the right side of the doublet X;
by *X; and X, respectively. In calculating the propa-
gation of a wave of topplings, it is convenient to define
an operator t which transfers a particle from the right
site of a doublet to the left site of the adjacent doublet
to the right. Thus X; X2...X,t Xp41... is the (pos-
sibly unstable) configuration resulting from the config-
uration X; X5...X,, X,,41..., by transferring a particle
from the right site of the nth doublet X,, to the the left
site of X,,11. We define t~! as the inverse of t. Then
X1 X2...X,t 71 X,y ... is the configuration obtained,
if one transfers a particle from the left site of a dou-
blet X, 1to the right site of the doublet X,,. Note that
unlike the particle addition operator a; of the general
ASM theory, no topplings are assumed to take place on
applying the t operators. However, we can express the
toppling rules in terms of relaxation rules for the ¢ op-
erators. These turn out to be more convenient to work
with than the toppling rules.



52 STRUCTURE OF AVALANCHES AND BREAKDOWN OF SIMPLE . ..

For the ASM on the doublet chain we can verify that
the stable configuration corresponding to an unstable
configuration can be determined by the following rules.

(i) A single toppling of source site would generate a
waves by transferring particles outside the source dou-
blet. The unstable doublets of type A and B generate
waves in both sides by the following rules:

A* 5t 1A%t *A—t1*AtL, 3
*B; -t 1*Bit, B>t lBjt. (3)

Here X — Y denotes that X relaxes to Y.
(ii) The relaxation of the configurations of type C' gen-
erates waves only on one side and becomes stable,

*Cl — t_lBl f C; — th . (4)

The creation of waves stops when the starred configu-
ration gets converted into the normal one.

(iii) Once generated, these operators t and t~! are
moved across the chain (¢ rightwards and ¢t~! leftwards)
as follows: The operator ¢ moves to the right of the dou-
blets of type A and B;, without changing them,

tA—)At, tB; — Bit. (5)

Thus the operator ¢t can be moved to the right of an ar-
bitrary sequence of doublets A and B;. This movement
corresponds to a “wave of topplings” defined by Ivashke-
vich et al. [32].

|

A At™! A*t B,
— At A A*
-t 1 A A A* B
— B, A A* B

Similarly after the second wave the configuration be-
comes

C2AA*C1B2B2A , (9)
after the third wave the configuration becomes

C1AA*C3B;B2A (10)
and after the fourth wave the configuration becomes

B,B;AB;B;B>A . (11)

Now there is no unstable site so the avalanche stops.
Clearly, working with the rules (1) to (5) is a quicker
way to calculate the final configuration than brute force
topplings. This method of transfer operator is easily gen-
eralized for other graphs. One will need more than one
operator of this type (t1,t2,...) if there is more than one
bond between the adjacent unit cells.

V. STRUCTURE OF THE AVALANCHES

In this section, we use the rules of propagation of
particle transfer operator t described above to analyze

Bt Cy
Cs
C2
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(iv) When the wave of topplings traveling to the right
hits a right stopper, it is stopped. We refer to the posi-
tion of the stopper as the end point of the wave. After
stopping the wave, the configurations of the right stop-
per and the doublet just left to the stopper change in the
following way:
XtB; —» X'A,

XtCz—)XIBz, XtC'l—+XC’2,

(6)

where X = A, B;,*A, A*,* B, B*,C*, and the correspond-
ing X’ are By, Ci, *By, A, *C1, Bz, and C3, respectively.

(v) At the right boundary one particle is dropped out
of the system. Thus we have for the doublet configuration
at the right boundary

At—)Bl, Bit— Cy. (7)

The corresponding rules for t~! can be written down
similarly.

To illustrate the use of these rules, we consider the
following example. Let us take L = 7, and consider
a recurrent configuration characterized by the string
AAAB,C;B;A. Add a particle at the site (3,2). The re-
sulting configuration is AAA*B,C;B;A. The final con-
figuration can be obtained by the repeated use of the
rules given above,

B, A using (1),

B, A using (3), 8
B, A using (3)and(4), ®)
B, A using (4)for t=1 .

the propagation of the avalanches. In the following, we
shall refer to the site where the particle is added as the
source of waves of topplings, or more simply, as the source
site. Without loss of generality, we may assume that the
source site is to the left of the BP.

Clearly, if the configuration of the doublet left of the
source site is (3,2), the avalanche does not spread to
the left, and propagates a distance of order L up to the
BP on the right. Each site affected by the avalanche
topples only once, and the total number of topplings in
an avalanche is of order L. Such an avalanche is said to
be of type I. It is easy to see that the probability that
the addition of a particle will cause an avalanche of type
Iis ;1“ The fraction of critical sites (sites, where addition
of particle will cause an avalanche, in this case sites with
height 3) is 3/4. Therefore, the fractional number of
type I avalanches in all nontrivial avalanches (avalanches
with at least one toppling) is 1/3. A picture showing the
evolution of type I avalanche is shown in Fig. 2(a).

In all other conditions, the avalanche behaves quali-
tatively different from the type I avalanches. We call
these type II avalanches. These avalanches travel a dis-
tance of O(L) on both sides of the source point. In these
avalanches, the motion of avalanche front is quite com-
plicated as may be seen from Fig. 2(b) which shows the
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FIG. 2. The evolution of (a) type I
avalanche, (b) type II avalanche in case A.
The gray rectangles denote individual top-
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evolution of type II avalanche. The spread of avalanche
is described in detail below.

The first right wave propagates to the BP. It crosses
each doublet in two time steps. So the velocity of the
avalanche front up to the BP is one doublet per two time
step. The propagation of the avalanche front to the left
is more complicated and shows an interesting stochastic
structure. The first wave crosses all the A type doublets
until it encounters the first doublet of type B;. From rule
(4), this B; type doublet stops the wave and becomes A
type. The A type doublet just to the right of it becomes
a B; type doublet. Neither of these two doublets is a left
stopper. Therefore, the second wave crosses the end point
of the first wave. It also crosses all the A type doublets
coming after that, until it hits a B; type doublet. The
doublet right to this doublet is again of type A. The

changes in the doublet configurations occur in the same
way as in the case of the first wave, and the next wave
crosses the end point of the second wave. Note that the
doublet just left of the end point of a wave is always of
type A, and there are only B, or A types of doublets
between the source point and the end point of the wave.
Thus each wave crosses the end point of the previous
wave and the avalanche keeps propagating leftward until
it reaches the boundary. For a large time, the distance
moved by the front increases linearly with time, and one
can define an average linear velocity of the front.

The average velocity of the avalanche front in this case
is easily calculated. Let the number of doublets of type
B; between the source point and the left boundary be n.
Then the avalanche takes n waves to reach the boundary.
The waves start after alternate time steps, so the nth
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wave starts after 2n time steps. It reaches the boundary
in 2m time steps, where m is the number of doublets
between the source point and the left boundary. Since
the probability of occurrence of a By type doublet is 1/2
on the left of the break point, n ~ m/2. Thus the time
taken by the avalanche to reach the boundary is 3m.
Therefore, the average velocity of the avalanche front is
1/3 doublets per time step.

The (n + 1)th wave reaches the boundary and drops
a particle from the system. From the above discussion,
we know that the doublet just right of the end point of
a wave is always of type A. For this wave, it implies
that the doublet at the boundary is of type A. After
the completion of the wave it becomes of type B;. The
next wave also reaches the boundary and drops another
particle. This converts the B type doublet into a C;
type doublet. The C; type doublet stops the next wave
and the avalanche front starts receding. The subsequent
waves make it C; and then B; [see rule (4)]. If the dou-
blet just right of this A type doublet is of By type, then
it becomes C; type and stops the next wave. Otherwise,
the next wave changes the B; type doublet into an A type
doublet. Thus an A type doublet whose right neighbor
is also of type A is changed in the following way by the
subsequent waves:

A— By, »>Cy—>C;, —->B; > A. (12)
If the right neighbor is of type B;, then the above se-
quence terminates at B;. The subsequence starting from
B, explains the way the B type doublet gets modified
as the avalanche front recedes.

The number of waves required to change an A type
doublet back to A type is five. Out of these waves the
last two waves also change the configuration of the dou-
blet just to the right. Thus the avalanche front takes
three waves to cross an A type doublet. It takes two
waves to cross a Bz type doublet. Since the probability
of By type and A type doublets is equal, the avalanche
takes 5m /2 waves to recede. The time steps required to
generate so many waves is 5m. The wave that reaches
the boundary takes 2m time steps more than the last
wave, which terminates near the source point. Thus the
time taken by the avalanche front to recede is 3m. This
shows that the effective backward velocity of the receding
avalanche front is 1/3 doublets per time steps.

If the distance between the BP and the source point
is not sufficient, the avalanche may stop before reaching
the boundary point on the left, as then the number of
waves generated at the source point is less than n.

The propagation of the avalanche front after reaching
the BP on the right of the source point is similar to that of
the left front. Here doublets of type B, are the stoppers.
We know that the first wave travels to the BP. If the BP
is of type By and the doublet just to the left is of type A,
then the second wave crosses the BP. After this, each new
right wave keeps moving further right until it reaches the
right boundary. The probability that the configuration
at BP is B; and the doublet to the left of it is A is %. In
all other cases the next right wave does not cross the BP
and the right avalanche front starts receding after having
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hit the BP. The forward and backward propagation of the
right avalanche front after crossing the BP is exactly the
same as that of the left avalanche front (with the role of
B, and B, type doublets interchanged).

VI. PROBABILITY DISTRIBUTION
OF AVALANCHE SIZES

For type I avalanches, the probability distributions of
sizes of avalanches, as measured by the total number of
topplings s, the total number of distinct sites toppled sq4,
the duration ¢, and the number of times the source site
topples n. is calculated easily. It is convenient to work
with the scaled variable a = % and 8 = %, such that
a, B € [0,1], where 7 and ¢ are the position of source
point and BP on the chain, respectively. Since, in these
avalanches, one site topples at each time step

s=s4=t=2(8—-a)L, (13)
and n. = 1. Thus the probability distribution of s/L,
s4/L, and t/L for given o and B has a § function at
2(B — a). Averaging over a and 3, we find for type I
avalanches

1 X
Probr (X, type I) = 3 (1 - 3) for 0<X <2,

(14)

where X = s/L, sq/L, t/L, and 1/3 is the probability of
occurrence of type I avalanche. In type I avalanches any
site topples only once, so 7. is always 1.

Type II avalanches show a much complicated and inter-
esting structure. In the preceding section, we have shown
that the avalanche front does not move uniformly in time,
and the spreading rate depends on the local height con-
figuration. However, for distances much larger than 1,
there is a nonzero average velocity. Thus at large length
scales the space time history of the avalanche front is an
approximate polygon (see Fig. 2). (The deviation from
the polygonal shape is diffusive in character, which grows
as v/ L, and can be neglected for large L.) The number of
sides in the polygon depends on the position of the source
point & and BP 3 and on whether the BP is crossed by
the avalanche or not.

If the BP is not crossed by the avalanche, there are
three distinct cases depending on the relative values of o
and 8. [Here we have assumed that a < 8. If a > 3, then
the problem is the same as the mirror reflected problem
witha = (1 —a) and 8 — (1 - 8).]

(a) 0 < a < 58/11, (b) 58/11 < a < 58/6,
and (c) 58/6 < o < B.

If the BP is crossed by the avalanche, there are four
distinct cases:

(a) 0 < a < min((1 — B)/6,0),

(b) (1—B8)/6 < a < min((6 — B)/11,6),

(c) (6 — B)/11 < & < min((1 — 3/6), B),

(d) (1 - 4/6) < a < B.

These are depicted in Figs. 3(a)-3(g).

The ranges of (a,3) corresponding to different cases
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(c)

FIG. 3. Schematic diagram
showing the. evolution of vari-
ous cases of type II avalanches.
The scaled variables «, 8, and
6 denote the source point, the

& F
2 |
=

Time

Space Space

Space

are easily determined from the known velocities of prop-
agation of advancing and receding avalanche front.

Consider, for example, the case shown in Fig. 3(a).
In this case the avalanche spreads to the BP on one side
and reaches the boundary on the other side and 4, the
point where the avalanche stops, is between a and 3. To
obtain § we equate the time taken for the right and the
left fronts to reach 4.

t/L=3a+3a+20—a)=2(8-a)+3(8-10). (15)

This implies that
6 2
5:,6—ga and t=3(4a+5,8)L. (18)

The condition e < § < B immediately gives us the range
0<a< &pB.

In this case, clearly as all doublets left to the BP topple
at least once,

sq=2081L. (17)

The factor of 2 accounts for the number of sites in each
doublet.

The number of topplings at the source site is half of the
height of polygon at the source site, because the source
site topples at alternate time steps. This gives

ne =3aL . (18)

The total number of toppling is equal to the area enclosed
by the avalanche front. It can be easily calculated using
simple geometry

@ break point (BP), and the point
where the last toppling occurs,
respectively.

5= ga(lqﬂ —1la) L?. (19)

Note that s4, t, and n. scale as L, because they are
proportional to the linear size of the polygon, whereas s
scales as L2, because it varies as the area of the polygon.
Therefore, for this type of avalanche it is convenient to
use the following scaled variables:

Sa = sd/L = 2,8 y

T =t/L = %(4a+50),
N.=n./L=33,

S=s/L? = 3a(108 - 11a) .

(20)

Similar expressions for Sy, N, T, and S are easily written

down in other cases. These are listed in the Appendix.
The probability distribution functions for given o and

0 are a sum of two ¢ functions corresponding to the cases

“whether the BP is crossed by the avalanche or not. Av-

eraging over « and 3 we find

Proby, (g, type II)

= p []1[)1 dadB (g — gi(e, B)) , (21)

1=1,2

where ¢ = S, T, Sq, N,, and the subscripts 1 and 2 refer to
the cases in which the BP is crossed, and those in which
the BP is not crossed, respectively. The probability that
the avalanche crosses the BP is p; = 1/9, and that it
does not cross the BP is p; = 8/9.

Since Sy is the extension of the polygon along the hor-
izontal axis, it is a linear function of a and (3 in each of
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the seven cases. Hence the probability distribution of Sy

is a piecewise linear function. The same argument works

for T and N, also. Explicitly, we find

5 215, 5
1

54 ( T ) +

Proby, (Sq, type II) = 525 (S4—2)

for 0<S;<2,

Proby, (N, type II) = ;7(3 —2N,)

for 0 < N, < , (22)

tV235 2435 27[ arcsin

Proby, (S, type II)

V3-28
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and
Proby, (T, type II)
%(14—% for 0<T <2
={§—%(1—% for 2<T <22 (23)
2 (3-1) for ¥ <T<3.

The scaled variable S is proportional to the area of
the polygon. Therefore, it is a quadratic function of o
and 3. However, this is a different quadratic function
in different ranges of («, 3) corresponding to Figs. 3(a)-
3(g). Substituting these formulas in Eq. (21) and doing
the integration we get finally

2 _ 2 (-5+4v3v3-T75)
— arcsin
7V/3-28

3 75
+ln(g)_lln \/;(1— ) L5, 11VS
54 27 27
VS VI5 (1-4/1-12)
5
forO<S< , (24)
Proby, (5, type 1) = —-L/3 | arcsin [ YL (2T AVIVETTS) [V 6+4v3v3-T5)
roby, (S, type )__ﬁ 3 arcsin 7V3-25 + arcsin 7353
3 115 3 78
1 Vit I+4y1-%5 \/;’(1— 1—7)
x— |vi0aresin [ -2 | 45m | —V 15 | _21
o7 arcsin m +951n _ fious n \/§
15
5 3
for — < S 25
or12< < , (25)
3 18
1 Vi1 5 1+ 4y/1-55 3 15
Proby (S, t II) = —+v10 i -y - — vy ° bl - 2
roby, (S, type II) 27\/ arcsin 73=35 +271n T fus f0r7<5<11 (26)

and

1 /5 15 3
Proby, (S, type II) = 27\//71' for T S <3 . (27)
Note that this probability distribution diverges for small
S as S~1/2 (see the second term in the first expression).
The diverging contribution comes from case (d) of Fig. 3.
In this case the linear size of the polygon is proportional
to A = (8—a). Therefore, S ~ AZ. As Prob(A) ~ const,
for A — 0, we get the square-root singularity in the
probability distribution of S for S — 0.
Summing over the contribution coming from type I
avalanches [Eq. (14)] and those of type II [Eq. (21)],

15

we obtain the full probability distributions. Note that n.
and s scale differently for type I and type II avalanches,
therefore the probability distributions of these quanti-
ties have the form given in Eq. (1). Other quantities
such as sq and t scale as L for both types of avalanches.
Therefore, the distribution of these quantities has a sim-
ple scaling form.

In Fig. 4, we have plotted the probability distribution
of s4, t, ne, s for type I avalanches, and s for type II
avalanches. The diamonds denote the simulation results
for the chain of size 100, and the solid line shows the the-
oretical expressions. The § functions in the expression of
sq and n. have not been shown. Note that our theoreti-
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FIG. 4. The probability distributions of
(a) t, (b) s4, (c) nc, (d) small s, and (e) large
s. The numerical data in the small s regime
agree with analytically obtained distribution
of the linear avalanche and in the large s
regime they agree with analytically obtained
distribution of the compact avalanche. The
numerical data are obtained from 500000
avalanches on a lattice of size 250.
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cal results show excellent agreement with the numerical
results even for L as small as 100.

VII. MULTIFRACTALITY IN PROBABILITY
DISTRIBUTION OF AVALANCHE SIZES

In the multifractal description one defines the function
f(a) by the condition that the probability distribution
of avalanches of size X ~ L scales as Lf(®) for large L.
The explicit form of f(«) is given by

fla) = Llim In[Probz (X = L*)]/In(L) . (28)

— 00
Thus the exponent f(«) is a function of the a. For our
Abelian model it is easy to see from Eq. (1) that f(«) for

14000 16000

X = s is a nonincreasing piecewise linear function given
by

2

-1 for 0<a<1. (29)

f(a):{_l_la for 1<a<?2

In Fig. 5, we have shown results of a computer simulation
of the model for L = 100 for 2 x 10° avalanches. Also
shown is the theoretical curve using Eq. (1) for L = 100
(dotted line) and L = oo (solid line). Clearly, there is
a very good agreement with simulation data. We note
that the f versus a curve is quite similar (nonincreasing
piecewise linear) to that obtained in [20]. Also note that
the approach to the L — oo limit is quite slow, because
the corrections decrease as only 1/1In(L).
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In [Prob(s) ] /In(L)
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-3 L I 1 1 1 1 1

FIG. 5. The log-log plot of Prob(s) vs s.
The solid line shows the exact asymptotic be-
havior for L — oo, and the dotted line shows
the theoretical curve for L = 100.

04 0.6 1
In(s) / In(L)

VIII. OTHER DECORATED CHAINS

In principle, the treatment may be extended to other
types of unit cells also. However, the analysis is consid-
erably more difficult even for slightly more complicated
unit cells. We omit the details and only summarize the
results for case B, where the unit cell is a diamond. In
this case the number of allowed configurations of the di-
amond on both sides of the BP is four. As a result, the
entropy per unit site is In(4)/4. In this case also, the
avalanches spread at least up to the BP on one side of
the source point and to a distance either of order L or
of order 1 on the other side. Thus again, there are two
types of avalanches which have the same scaling proper-
ties as the type I and type II avalanches of case A. A

detailed calculation shows that these occur with relative
frequencies 5:8 on the average.

The propagation of avalanche front in this case is more
complicated than case A. In Fig. 6, we show a typical
type II avalanche. We see that the avalanche front has
an erratic, zigzag motion, which goes forward and back-
ward many times depending on the local diamond height
configuration. However, the time taken by the front to
travel a long distance r is proportional to r [up to O(/7)
corrections]. Thus, one can define asymptotic velocities
of fronts. The outward velocity up to the BP is 1/3
diamonds per time step. The average outward velocity
beyond the BP and also on the other side of the source
point is 1/6 diamonds per time step. The average veloc-
ity of receding avalanche front is 1/10 diamonds per time
step.

600

500

400

300

Time

200

100

FIG. 6. The evolution of a type II
avalanche in case B.

40 60

Space

80

100
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The analysis of the preceding section can be repeated
in toto beyond this point. The probability distribution
functions for both type I and type II avalanches have
the same qualitative features irrespective of the veloci-
ties. For type I avalanches, t ~ sq ~ (8 — &)L to order
L. Thus the probability distribution of s4 and ¢t have the
same linear form as in case A, while the slope depends on
the velocities. The variable n. has the probability distri-
bution Prob(n;) ~ 27"<. As s ~ n.(8—a)L, this implies
that the scaling function f; in Eq. (1) is a piecewise
linear function with infinitely many segments.

For type II avalanches the space time history of active
sites forms a polygon. The slopes of edges of the polygon
depend on the velocities. As a result, the probability dis-
tributions have the same qualitative behavior as in case
A. The exact form of functions f; and f, are not the
same in cases A and B, and this proves that these func-
tions are not universal. In case C, there are no avalanches
of type I, and the simple scaling ansatz works [25].

IX. SUMMARY AND DISCUSSION

To summarize, we have studied the Abelian sandpile
model on one-dimensional decorated chains. The calcu-
lation of structure of avalanche can be simplified by us-
ing the particle transfer operator, which was motivated
by the technique of decomposition of avalanche into the
waves of topplings introduced by Ivashkevich et al. We
determined an exact asymptotic finite-size scaling behav-
ior of the distribution of avalanche sizes. We find that
the behavior of ASM on these chains is very different
from that on the simple linear chain. The number of
recurrent configurations in the steady state grows expo-
nentially with the size of the chain and the critical state
is not translationally invariant. There are two types of
avalanches, type I and type II, which show different scal-
ing properties. As a result, the probability distribution of
the total number of topplings s and the number of times
the site of addition of particles toppled n. in an avalanche
can be described by a linear combination of two simple
scaling forms (LC2SSF), but not by the simple scaling
form. We find that this scaling form is quite robust, and
holds for several different one-dimensional conservative
Abelian sandpile models.

As the LC2SSF involves only a finite number of un-
known parameters, its use when simple scaling fails is
preferable over the more general multifractal form (which
corresponds to a linear combination of infinitely many
simple scaling forms). We also note that we find the
breakdown of simple scaling without the appearance of
new length scales in our model.

Similar behavior may be expected in other one-
dimensional models. For example, consider the ASM on
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an L x M cylinder with open boundary condition at the
ends. For L >> M, this lattice is effectively one dimen-
sional. We expect three types of avalanches: type I and
II, and finite avalanches of size < M, which do not ring
the cylinder, and are two dimensional in character. This
suggests that a LC3SSF would describe this situation.
It remains to be seen whether this behavior survives in
higher dimensions or if it is specific to one-dimensional
models.

APPENDIX

In this appendix we list the expression of T', S4, N,
and S for various cases shown in Fig. 3. Case (a) has
been dealt with in the text. Here we consider cases (b)—
(h).

Case (b). In this case ¢ is between 0 and «. Hence ¢
is given by

5= (56 - 6a) (A1)
and
T—_—g(sﬂ—a)> Sqa=20,
N.=%B-a), S = 2a(108 - 11a). (A2)
Case (c). For this case § = 6cx — 53 and
T=15(6—a), Sa=12(8—-«a), A3
N.=3B-a), S =15(8—a)?. (A3)
Case (d). For this case § = (6 — 6a — 3) and
T=26+40—0), Sa=2,
N, = 3a, (A4)
S = 3(—1+12a + 28 — 2a8 — 11a? — B?).
Case (e). For this case § = 6a + 3 and
T =16a+ 283, Sq =12+ 283, A5
N. =3a, S = 3a(5a+20) . (A5)
Case (f). For this case § = 1(6 — 6a — 3) and
T=%6-a-8), Sa=2,
N.=31(6—-08-5a), (AS)

S =32(-1+12a+28 —2a8 — 11a* — %) .
Case (g). For this case § = 6a + 8 — 6 and

T=3(6-5x—-p),
Nc=%(6—,3—5a),

Sa=2(7—6a-p),
S=3(1—-a)(7—28-5a).
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FIG. 2. The evolution of (a) type I
avalanche, (b) type II avalanche in case A.
The gray rectangles denote individual top-
pling events.
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FIG. 6. The evolution of a type II
avalanche in case B.



